
The problem The implications Conclusion

Unit (and other) testing of stochastic code

Simon Dobson

Complex and Adaptive Systems Research Group
School of Computer Science, University of St Andrews

mailto:simon.dobson@st-andrews.ac.uk

https://simondobson.org

mailto:simon.dobson@st-andrews.ac.uk
https://simondobson.org


The problem The implications Conclusion

Introduction

We’ve recently been working on epidemic modelling
I Simulation of stochastic processes on networks
I Large scale (105 nodes), lots of repetitions at different

points in a parameter space

Developing and maintaining a codebase for stochastic
processes has raised some interesting questions about
how to engineer such systems

This talk
I How we optimised, what went wrong, questions that arise

about software engineering for stochastic codes

2/12



The problem The implications Conclusion

Epidemic modelling on one slide
“Compartmented” disease models 1

I e.g., Susceptible-Infected-Removed
I Maintain sets of SI edges and I nodes
I Draw random element and change edge

states, node compartments
I Sequential, several million operations

Scale
I Simulate for different disease parameters
I Exact results are stochastic, but follow

distributions that are known for common
processes (and not for others)
1S. Dobson. Epidemic modelling – Some notes, maths, and code. Independent Publishing Network, 2020. ISBN

978-183853-565-0. URL https://simoninireland.github.io/introduction-to-epidemics/

3/12

https://simoninireland.github.io/introduction-to-epidemics/


The problem The implications Conclusion

The optimisation

Core operation is drawing a random element from a set
I Python’s inbuilt sets don’t support this
I ⇒ re-code as balanced binary trees
I “Book” solution involves lots of random numbers
I ⇒ developed an optimisation that reduced this

significantly
I Massively faster – at the cost of introducing a slightly

biased choice, some elements slightly less likely to be
drawn

Question: Is this optimisation safe?

4/12



The problem The implications Conclusion

Let’s do some experimental science

Distribution of SIR and other processes are known
I We were already aggressive about testing, with a full CI

infrastructure in place
I Analytic prediction of the location of the phase transition
I ⇒ run a set of sample experiments, compare empirical to

theoretical distribution
I χ2 goodness-of-fit test (or other statistical magic)

Therefore although we know that there is bias, it isn’t
being observed by the disease process

5/12



The problem The implications Conclusion

Everything always works, until it doesn’t
Several months later, combine disease process with
addition-deletion process
I Dynamic population of nodes, changing population of

edges
I Addition-deletion has a known final degree distribution 2

I . . . and our implementation doesn’t follow it

Much debugging later
I The addition-deletion process does observe the bias
I (Still not entirely sure why. . . something to do with the

time nodes are resident in the sets)

2C. Moore, G. Ghoshal, and M. Newman. Exact solutions for models of evolving networks with addition and
deletion of nodes. Physical Review E, 74, September 2006. URL doi://10.1103/PhysRevE.74.036121

6/12

doi://10.1103/PhysRevE.74.036121


The problem The implications Conclusion

Local solutions: better unit tests
Stochastic code needs specific kinds of test
I A result isn’t right or wrong on it’s own, and therefore isn’t

(on its own) a suitable unit test

Each test samples the distribution of possible results
I Take samples, compare to what’s expected
I (We’ve written a library to do this, obviously)

Challenges
I You need to run lots of samples, which may be

individually expensive
I (Do you really want to need a compute cluster for testing?
I May not know the distribution you should expect

7/12



The problem The implications Conclusion

Where are the stochastic elements?

In our case we knew we had stochastic effects
I We were looking at the shapes of distributions (although

not in the place that affected them)

What happens when you don’t know?
I Race conditions can be very subtle
I (Does your OS thread scheduler affect your results?)
I More importantly, these effects can come from the

interactions between components rather than from the
components themselves

8/12



The problem The implications Conclusion

When is stochastic code stochastic?

The interactions are themselves stochastic
I Some processes observe bias, some observe variance
I . . . and some don’t

The risks
I The composition of two correct components may not be

correct – a massively larger surface area for testing
I By definition less likely to observe low-probability events
I We have a weak understanding of these effects
I How does a stochastic operation map the distributions of

its inputs to those of its outputs?

9/12



The problem The implications Conclusion

Specifying test suites

Was there something we could have done differently?
I How to design suites that catch these effects?
I You can only deliberately test something you can observe

(and know you want to)

More-than-unit tests
I We took to reproducing the results of known and “classic”

papers, in whose results we had confidence
I Do our simulations get the same results?
I This then threw up some major questions about

reproducubility and the adequacy of the scientific paper as
a communication tool. . .

10/12



The problem The implications Conclusion

Conclusion

We need to look at this further
I Changes the way we think about testing
I Changes the testing infrastructure
I Makes automation/devops/CI even more important (but

potentially more resource-intensive)

How much stochastic code is out there?
I We don’t know
I Comes up very obviously in simulation, which is perhaps

something we need to teach more of
I Important as an application area, but also illuminates

issues of general software engineering interest

11/12



The problem The implications Conclusion

References

S. Dobson. Epidemic modelling – Some notes, maths, and code. Independent Publishing Network, 2020. ISBN
978-183853-565-0. URL https://simoninireland.github.io/introduction-to-epidemics/.

C. Moore, G. Ghoshal, and M. Newman. Exact solutions for models of evolving networks with addition and
deletion of nodes. Physical Review E, 74, September 2006. URL doi://10.1103/PhysRevE.74.036121.

12/12

https://simoninireland.github.io/introduction-to-epidemics/
doi://10.1103/PhysRevE.74.036121

	The problem
	The implications
	Conclusion

